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Abstract

Simulation of unsteady viscous turbomachinery flowfields is presently

impractical as a design tool due to the long run times required. Designers rely

predominantly on steady-state simulations, but these simulations do not account

for some of the important unsteady flow physics. Unsteady flow effects can be
modeled as source terms in the steady flow equations. These source terms,

referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady

flow solution procedures to reproduce the time-average of an unsteady flow
solution. The goal of this work is to investigate the feasibility of using inviscid

lumped deterministic stresses to model unsteady combustion hot streak

migration effects on the turbine blade tip and outer air seal heat loads using a

steady computational approach. The LDS model is obtained from an unsteady

inviscid calculation. The LDS model is then used with a steady viscous

computation to simulate the time-averaged viscous solution.

Both two-dimensional and three-dimensional applications are examined.

The inviscid LDS model produces good results for the two-dimensional case and

requires less than 10% of the CPU time of the unsteady viscous run. For the

three-dimensional case, the LDS model does a good job of reproducing the time-
averaged viscous temperature migration and separation as well as heat load on

the outer air seal at a CPU cost that is 25% of that of an unsteady viscous

computation.

Introduction

Experimental data taken from gas turbine combustors indicates that the flow

exiting the combustor has both cJrcumferentiaJ and radial temperature gradients.

These temperature gradients have significant impact on the wall temperature of

the first stage rotor. A combustor hot streak, which can typically have

temperatures twice the free stream stagnation temperature, has a greater

streamwise velocity and cross-flow vorticity than the surrounding fluid and
therefore a larger positive incidence angle to the rotor as compared to the free

stream. Due to this rotor incidence variation through the hot streak and the slow

convection speed on the pressure side of the rotor, the hot streak typically

accumulates on the rotor pressure surface. As a result, the time-averaged rotor-

relative stagnation temperature is larger on the pressure surface than on the

suction side. The secondary flow in the rotor passage also causes the hot fluid
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on the pressure side to spread from midspan towards the hub and tip endwalls,

resulting in the heating of the outer air seal.

In the absence of total pressure non-uniformities, the temperature gradients
due to the hot streak have minimal impact on the pressure distribution in the

rotor. Thus, steady-state computations are typically used to compute the

pressure distribution through the first stage of the turbine. For a steady-state

computation, the tangential components of the hot streak at the exit of the stator
are flux-averaged and only the radial variation in the rotor frame is retained.

Many authors have shown that the tangential variations in the hot streak are of

prime importance in establishing the hot streak migration path through the blade

passage [1,2,3,4]. By mixing out the tangential variation at the rotor inlet, the

steady-state computations do not model the temperature segregation in the
blade passage or produce the correct temperature distributions on the blade
surface.

Previously, the only way to correctly model the hot streak migration through

the rotor was with three-dimensional time-accurate viscous computations.
However, three-dimensional unsteady viscous computations are too

computationally intensive and time consuming to be integrated into the design

process. A more desirable approach is to include the time-averaged unsteady
effects into a steady computation via an unsteady model. For this work, the

lumped deterministic stresses associated with an unsteady inviscid calculation

are used to model the time-averaged unsteady effects in a steady viscous

calculation. Although unsteady inviscid calculations are more computationally

expensive than steady inviscid or viscous computations, they require significantly
less computational resources than unsteady viscous computations. Since the

migration and segregation of the hot streak in the rotor is predominantly

convective in nature, the inviscid LDS field should provide a reasonable model

for the time-averaged temperature distribution in the rotor passage. The inviscid

LDS models may also provide insight into the development of an analytical
model for the unsteady effects.

Both two-dimensional and three-dimensioral LDS models are examined in

this report. For the two-dimensional application, the LDS model is computed

from a 1-1/2 stage turbine unsteady inviscid hot streak migration calculation.

The corresponding LDS field is first applied to a steady inviscid computation as a

check of the overall procedure. Next, the inviscid LDS field is interpolated onto a

two-dimensional viscous grid and a steady viscous solution (with the LDS model)

is computed. The inviscid LDS model with the steady viscous solution did a

good job of reproducing the viscous time-aveaged values of the temperature
segregation in the passage and the surface temperature distribution on the
blade.

Next, the two-dimensional LDS model is extended to three dimensions. In

phase II of this effort, numerous three-dimensional computations for inviscid and

viscous steady and unsteady conditions were p_rformed using a strip-blade-strip

configuration. For the strip-blade-strip configuration, the first and second vanes

were replaced with a narrow (in the axial direction) grid strip. The freestream

boundary conditions on these strips were set with the corresponding first vane
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exit and second vane inlet conditions. Along with the strip models, various other

physical models were used to simulate viscous effects, cooling effects and tip

leakage effects. It was determined, however, that these additional physical

models produced unrealistic LDS fields and the interaction between the physical
and LDS models needs to be investigated further. Therefore, the additional

physical models were removed to demonstrate the LDS model by itself and the
flow through the stage was recomputed using a vane-blade configuration.

Computational Model

Since deterministic stresses are analogous to turbulent stresses,

decomposing velocities into mean and fluctuating components and applying the

decomposed velocities to the Navier-Stokes equations is a natural starting point

for modeling the deterministic stresses. Consider the 2-D Navier-Stokes

equations:

where Q is the vector of conserved variables, E and F are the convection fluxes,

and the diffusion fluxes, E,. and F,., are given by

where

i01E,= F,=

I e" I• LLJ

(2)

t_

es = urxx + vL,. + q, (3)

f_" = u'c.,._+ vr,.,. + q, (4)

In conventional Reynolds decompositions, velocities are decomposed into

mean and fluctuating components, and the stresses rij in the above equations

represent the sum of molecular stresses and turbulent stresses. In the theory of

deterministic stresses [5], the velocity fluctuations are considered to have a

random (turbulent) component and a deterministic component. The

deterministic fluctuations occur on larger space and time scales than the random
fluctuations, and are a result of phenomena such as wake passing and rotor-

stator potential interaction. In Ref. [5], the flowfield is further decomposed into

an "average passage" and deviations from the average passage, but the

average-passage analysis is not employed in the present study.
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The velocity is first decomposed into a "deterministic" velocity
stochastic fluctuation u',

Uj = Uj + U_

B

u and a

(5)

The deterministic velocity is further decomposed into a mean value and a
deterministic fluctuation,

PP

ui = uj + uj (6)

This decomposition is illustrated in Fig. 1. The value of is constant, since it is

averaged over all time scales. The smooth curve represents temporal variation

of the deterministic velocity , which has a relatively large time scale, and the

jagged line represents the instantaneous velocity, u.

The decompositions in Eqns. (5) and (6) may be interpreted as using mass-

weighted averaging (Favre averaging) or Reynolds averaging. Here, the

Navier-Stokes equations are mass-averaged in the conventional manner using
Eqn. (5). The velocity is then further decomposed according to Eqn. (6), and the

resulting equation is Reynolds averaged. A combination of mass-weighted

averaging and Reynolds averaging is employed because this yields a more

convenient form of the equations as compared with using either averaging

technique alone. These averaging procedures yield two "additional" stress
terms,

R_j = Pui'u _+ pui'i,;' (7)

where the first term on the right hand side is the conventional Reynolds stress

and the second term on the right hand side is the deterministic stress. The total

stress, rij, therefore has three components: the molecular stress, the turbulent

stress and the deterministic stress.

= + r,j+ (8)

Analogous decomposition is also applicable to the heat transfer rate, qi.

Each diffusion flux in Eqn. (2) can be decomposed into three components in

accordance with Eqn. (8). Rewriting Eqn. tl) with this decomposition and

explicitly indicating the functional dependence cf the fluxes on Q, yields

OQ OE(Q) OF(Q)
+ +

& ax

f a r m

-Re-ll_x [E,, (Q)

1 a r m

+ E_(Q)+ U(Q)]+-_--[F, (Q)
oy + F,!(Q) + F,a(Q)]}

=0

(9)
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Now, define an operator R(Q)

OE(Q) OF(Q) ,[ O r m O r ., 1R(Q)- Ox 4 Oy Re- _-_x[E,, (Q)+ E,'.(Q)]+--_,[F,. (Q)+F,:(Q)] (10)

Note that this operator does not include the time term or the deterministic stress
terms. The sum of the deterministic stress terms in both coordinate directions,

D, is defined as

(OE_(Q) OF_' (Q)) (11)D(Q) - -Re-'l, ' 0x +

Applying Eqns. (10) and (11) to Eqn. (9) yields

aQ
--+R(Q)+D(Q) = 0 (12)
&

Let (2.,represent a steady-state solution (without deterministic stresses), and let

(2,,, represent the time-average of an unsteady solution. Since the numerical

approximation of R(Q)is driven toward zero for a steady-state solution,

R(Q,.)=O

The time-average of an unsteady solution will not be identical (in general) to the

steady-state solution due to the existence of the deterministic stresses.

Averaging a periodic flow over one period results in OQ,,,/& =0 and the

deterministic stress term, D, is given by

D(Q,,, ) = -R(Q,. )

Since the "residual" of the Navier-Stokes solver is the numerical approximation

of R(Q), one method of computing D(Q,a) is to initialize the flow solver with Q,,

and to compute the residual. This, of course, is not a practical method for

deducing the deterministic stresses, since the goal is to solve for Q,a without

incurring the expense of an unsteady computation, but it is a convenient method

for extracting the /9 field as an aid toward developing a useful model for /9. If

/9 could be successfully modeled, it could be input to the solver as a source

term and convergence to a steady state would then result in the solution for Q,,,

without performing an unsteady simulation.

Some unsteady effects are inviscid, such as vane-blade potential interaction,

and other unsteady effects are viscous, such as wake shedding. A method for

computing the LDS model without performing an unsteady, viscous simulation is

NASA/CR-- 1998- 208666 5



to use an unsteady, inviscid simulation instead. The resulting LDS field is

interpolated onto the viscous grid, and the viscous simulation is converged to a

steady state. This will capture some of the unsteady effects, with the advantage

that the cost of the inviscid simulation is significantly less than that for a viscous
simulation. Also, the procedure used to compute the LDS model can be used in

conjunction with any flow solution procedure.

Flow Solution

The time-dependent, Reynolds-averaged Navier-Stokes equations are

solved with an implicit dual time-step approach coupled with a Lax-

Wendroff/multiple-grid procedure [4,6,7,8,9]. For the steady computations, only
the /ax-Wendroff/multiple-grid procedure is used. The scheme uses central

differences for the spatial derivatives with second- and fourth-order smoothing

for stability. The algorithm is second-order accurate in time and space. The

Baldwin-Lomax [10] turbulence model is used to compute the turbulent viscosity.

No-slip and adiabatic wall conditions are used on all solid boundaries. Giles'

[11] two-dimensional, steady, non-reflecting, freestream boundary conditions are

used at the downstream freestream boundary. At the inter-blade-row

boundaries where the computational grid sectors move relative to each other,

the pseudo-time-rate change of the primary variables are interpolated from the
adjacent blade row and added to the time-rate changes computed from the Lax-
Wendroff treatment.

Results

The results obtained using the two- and three-dimensional inviscid LDS

models are presented in this section. For the two-dimensional case, the hot
streak migration through 1-1/2 turbine stages is examined. The LDS field

resulting from the residual of the time-averaged unsteady inviscid solution is first

applied to a steady inviscid solution (to verify that the LDS methodology is

implemented correctly). Next, the LDS field is interpolated onto a viscous grid
and the subsequent steady viscous solution with the inviscid LDS model is

computed.
For the three-dimensional application, the hot streak migration through a

single stage is examined. The inviscid LDS field is applied to a steady inviscid

solution first and then interpolated onto a viscous grid and applied to a steady

viscous solution. The temperature distribution on the blades, outer air seal and

through the passage are presented to demonstrate the capabilities of the inviscid
LDS model.

Two-Dimensional Analysis

For this analysis, a 1-1/2 stage turbine is modeled with a 1-1-1 blade count.

The Euler and viscous grids for the turbine are shown in Fig. 2. Only the flow

through the blade sector is examined in detail. To ensure that the LDS source

term and methodology are implemented correctly, the inviscid LDS model is

added to a steady inviscid computation. By definition of the LDS field (the
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residual, or source term, that drives the steady variables to those of the time-

averaged solution), the time-averaged solution should be exactly reproduced.

The relative temperature on the blade surface for the inviscid steady, time-

averaged and LDS solutions is shown in Fig. 3. The LDS model exactly

reproduces the time-average temperature distribution on the blade, indicating

that the method is implemented correctly.
Next, the LDS field for the inviscid solution is interpolated onto the viscous

grid. The energy LDS field through the blade is shown in Fig. 4 for the inviscid

grid and interpolated onto the viscous grid. For the hot streak simulations, the
LDS field associated with the energy equation dominates the unsteady flow. The

effect of the individual components (i.e., continuity, axial and tangential

momentum and energy) of the LDS model are shown in Fig. 5. The steady
inviscid solution with all of the LDS components is shown on the left. Addition of

just the component from the continuity equation produces a very slight

temperature segregation, while addition of the momentum terms does not

change the temperature distribution from the steady solution. The LDS terms

from the energy equation produce nearly all of the temperature segregation in
the solution. However, other viscous simulations that did not contain hot streaks

[12], showed that the LDS field associated with the other equations may
dominate the flow. Thus, all of the LDS terms are used in the inviscid LDS

model.

The relative total temperature distribution on the surface of the blade is

shown in Fig. 6 for the time-averaged and steady viscous solutions as well as

the solution for the steady viscous flow with the inviscid LDS model. The Euler

LDS model does a good job of reproducing the viscous time-averaged total

temperature distribution on the blade. Figure 7 shows the relative total

temperature contours in the passage for the steady and time-averaged viscous
solutions and the solution for the steady viscous flow with the inviscid LDS

model. This figure shows how well the two-dimensional Euler LDS model

reproduces the time-averaged viscous temperature segregation in the passage.
The computational requirements for each case are listed in Table 1. The

timings in Table 1 represent 1000 time-steps for the steady case and 10 cycles

(where one cycle is the time for one blade to pass one vane) for the unsteady
case. The tremendous increase in CPU requirements for the viscous case

stems from the need for more time steps per cycle (200 for viscous versus 100

for inviscid) as well as an increase in the number of inner iterations required at

each time step to resolve the flow in the viscous region (60 for the viscous

versus 25 for the inviscid). The data in Table 1 indicates that the LDS model

requires only 3.4% of the CPU time of the unsteady viscous computation.
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Table 1. Two-dimensional CPU requirements.
Total STEADY UNSTEADY

Grid Points

Inviscid Grid 7,497

Viscous Grid 72,345

Viscous+lnviscid LDS 72,345

(CPU sec.)
598

5,773

17,429"

(CPU sec.)
11,058

TOTAL

(CPU sec.)
11,656

512,202 517,975

N/A 17,429

*CPU=Steady Inviscid+Unsteady Inviscid + Steady Viscous

The results shown in Figs. 6 and 7 indicate that the two-dimensional inviscid

LDS model does a good job of reproducing the time-averaged temperature

segregation caused by the circumferential variation of the temperature at the

inlet to the blade. However, as discussed in a previous section, both the radial

and circumferential variations of the temperature affect the migration of the hot

streak through the blade sector. As such, it is necessary to examine the three-
dimensional application of the LDS model to see if the inviscid LDS model can

reproduce the hot streak migration predicted by viscous computations.

Three-Dimensional Analysis

For the three-dimensional computations, an inviscid LDS model is used to

simulate the hot streak migration through a single vane-blade stage. The

inviscid and viscous grid distributions are shown in Fig. 8. The LDS field is

computed from the time-averaged solution obtained with the inviscid grid. The

inviscid LDS model is then applied to the corresponding steady inviscid and
viscous solutions.

To verify the implementation of the three-dimensional LDS algorithm, the

inviscid LDS field from the inviscid grid is added to the corresponding steady

inviscid computation. The convergence history for the steady Euler computation

with the LDS field is shown in Fig. 9. The convergence history indicates that the

steady solver with the inviscid LDS source term is stable and converges in a
reasonable time. The relative total temperature distributions on the blade at

three spanwise locations for the steady, time-averaged and inviscid LDS model

are shown in Fig. 10. The inviscid LDS model exactly reproduces the time-

averaged blade surface temperatures at all spanwise locations. Figure 11

shows contours of relative total temperature at midspan in the blade passage.

As with the surface temperatures, the inviscid LDS model exactly reproduces the

time-averaged temperature segregation in the blade passage. This application of
the inviscid LDS model to a steady inviscid problem demonstrates that the LDS

methodology is implemented correctly in the three-dimensional solver.

Next, the results from the application of the inviscid LDS model to a steady
viscous simulation are presented. The LDS fled from an inviscid grid is applied

to a steady viscous solution. Since the grid densities differ for the inviscid and

viscous grids, the LDS model obtained from the inviscid solution does not map

directly onto the viscous grid. Therefore, a three-dimensional interpolation of the

inviscid LDS field onto the viscous grid must be performed. The interpolation

strategy must be able to handle the difference between inviscid and viscous grid

techniques near the leading and trailing edges as well as in the tip clearance
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region. The energy LDS fields for the inviscid grid and the viscous grid onto
which the LDS field has been interpolated are shown in Fig. 12. The contours at

a constant radial plane at midspan are shown on the left, while those for a

constant axial plane at the rotor inlet are shown on the right. This figure

demonstrates that the three-dimensional interpolator is implemented correctly.

The convergence plot for the steady viscous calculation with inviscid LDS

model is shown in Fig. 13, along with the convergence for the steady viscous

calculation. The steady solution with the inviscid LDS model requires more

iterations to converge, but converges to nearly the same level as the steady

viscous computation.
The relative total temperature distributions on the blade for the inviscid LDS

model as well as the time-averaged and steady viscous solutions at three

spanwise locations are shown in Fig. 14. The inviscid LDS model produces
surface temperatures very close to the time-averaged viscous values. Near the

endwalls, the inviscid LDS model predicts the same heat loads as the time-

averaged viscous solution, but near midspan, the heat load predicted with the
inviscid LDS model is less than that of the time-averaged viscous solution.

Relative total temperature contours for the rotor pressure and suction surfaces

are shown in Fig. 15. The contours indicate that the hot streak predicted with
the inviscid LDS model has less spreading of the core region on the pressure

surface than that of the time-averaged viscous solution, but matches the time-

averaged viscous solution extremely well on the suction side of the blade. Blade-

to-blade cuts of the relative total temperature contours at the leading edge of the

blade (see Fig. 16) indicate that the inviscid LDS model reproduces the time-

averaged viscous temperature segregation near the leading edge that is not

produced by the steady viscous solution. In Fig. 17, blade-to-blade cuts near
midchord show that the core of the hot streak predicted with the LDS model is

similar to that predicted with the time-averaged viscous flow, while the steady

computation does not produce a core flow at all. However, the core of the hot

streak predicted with the LDS model breaks apart near its lower edge with some

of the core migrating to the pressure surface and some remaining just off of the

pressure surface, resulting in a smaller section of the pressure side of the blade

heating up (see Fig. 15, also). The time-averaged viscous solution indicates that
the core remains concentrated and all of it migrates to the pressure side of the

blade, resulting in a larger area of the pressure side of the blade heating up.

Near the trailing edge, (see Fig. 18), the behavior of the core hot streak is similar

to that at midchord: The core produced with the LDS model is less concentrated

than that of the time-averaged viscous computation, resulting in a smaller area

of the blade surface heating up.

The ultimate goal of this work is to predict the effect of the hot streak on the

time-averaged temperature distribution on the outer air seal with a steady
computation. The circumferentially averaged relative total temperatures on the

outer air seal for the steady and time-averaged viscous solutions as well as the

steady viscous with the inviscid LDS model are shown in Fig. 19. The steady

viscous computation predicts cooler temperatures in the leading edge region

than the time-averaged viscous computation. The inviscid LDS model does a
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good job of predicting the time-averaged viscous temperature level as well as

the location where the outer air seal begins to heat up.

As with the two-dimensional results, the steady viscous solution with the LDS

model is significantly less expensive to compute than the unsteady viscous
solution. The computational costs for the inviscid, viscous and LDS solutions are

shown in Table 2. The CPU times for the steady computations are based on

6000 iterations, while those for the unsteady computations are based on 10

cycles. For the unsteady inviscid and viscous solutions, 200 iterations per global
cycle and 10 (for inviscid) and 30 (viscous) inner iterations are used. The CPU

requirements for the steady viscous computations with inviscid LDS model are

only 25% of those for the unsteady viscous computations. This number is higher
than that for the two-dimensional case (3.6%), because a finer inviscid grid is

required to resolve the three-dimensional effects.
The results presented in this section indicate that the inviscid LDS model is a

viable option for predicting the time-averaged flow characteristics of a hot streak

migrating through a turbine stage and the temperature increase on the outer air

seal caused by the hot streak. The inviscid LDS model does not exactly

reproduce the segregation and spreading of the hot streak core that is predicted
by the time-averaged viscous flow. This deficiency may be due to the lack of

viscous effects in the inviscid LDS model. Further work is required to

incorporate viscous effects into the inviscid LDS model and to examine in detail

the LDS field associated with the viscous regions. This could be achieved by
comparing the LDS field from a viscous solution with that from an inviscid

solution. Performing a parametric study of the application of the LDS models for

various hot streak profiles may also indicate the driving mechanism behind the

differences in the LDS solution and the time-averaged solution.

The success of the LDS model comes at the relatively low cost of the
inviscid solutions. Another approach that may _)e even less costly is to develop

a new inter-blade-row boundary condition that includes the unsteady effects as a

source term, similar to the implementation of the LDS model. An analytical

description of the source term may also be derived from the lumped
deterministic stress terms.

Tabl(

Inviscid Grid

Viscous Grid

Viscous+lnviscid LDS

2. Three-dimensional CPU requirements.
Total

Grid Points

143,418

STEADY

(CPU sec.)
68,668

UNSTEADY

(CPU sec.)
169,546

430,122 205,942 1,525,449

430,122 444,456* N/A

*CPU=Steady Inviscid+Unsteady Inviscid + Steady Viscous

TOTAL

(CPU sec.)
238,514

1,731,391

444,456
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Conclusions

This report has presented the results of a study into the feasibility of using

lumped deterministic stresses to model the time-averaged unsteady effects of

the migration of a hot streak through a first stage rotor and the resulting heat
load on the outer air seal. Time-averaged unsteady inviscid solutions are used

to compute the LDS model. This model is then used with a steady viscous
solution to simulate the time-averaged viscous solution. Both two-dimensional
and three-dimensional models are examined. The two-dimensional results

indicate that the inviscid LDS model can simulate the time-averaged viscous

solutions at a significant reduction in CPU costs. The three-dimensional results

show that the inviscid LDS model does a good job of predicting the migration

and segregation of the hot streak as well as the increased heat load on the outer
air seal. These three-dimensional results can also be obtained at a significant

savings in CPU.
The effect of the tip leakage flow was not included in these computations

and should be addressed. Other areas that need to be examined include

incorporating viscous effects into the LDS model and developing a new inter-

blade-row boundary condition that includes the LDS model for the unsteady

effects. Performing a parametric study of the application of the LDS models for
various hot streaks would also provide insight into the development of an

analytical model. This work was scheduled to be performed in phase IV of this

program but has been discontinued due to a lack of funding.
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Figure 2. Two dimensional inviscid and viscous grid distributions for a 1 1/2stage
turbine.
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Figure 3. Two-dimensional LDS terms applied to inviscid steady simulation
exactly reproduce the time-averaged relative total temperature distribution on the
blade surface.
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Figure 5. The hot streak migration and segregation are dominated by the energy
LDS terms.
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simulation reproduces the time-averaged relative total temperature distribution
on the rotor blade.
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Figure 7. Inviscid LDS terms applied to a steady two-dimensional viscous

simulation reproduce the time-averaged segregation of the relative total

temperature in the rotor blade.
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Figure 9. The convergence history for steady inviscid solution with inviscid LDS
model indicates that the addition of the LDS source terms does not cause
instabilities in the solution.
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Figure 10. Three-dimensional inviscid LDS model applied to an inviscid steady
simulation EXACTLY reproduces the time-averaged relative total temperature
distribution on the rotor blade.
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Figure 11. Three-dimensional inviscid LDS field applied to an inviscid steady
simulation EXACTLY reproduces the time-averaged relative total temperature
segregation in the passage at midspan.
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Figure 12. Three-dimensional energy deterministic stress field from inviscid grid
interpolated onto viscous grid.
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Figure 13. The convergence history for the steady three-dimensional viscous
solution with inviscid LDS model shows that the additional source term does not
cause instabilities in the solution.
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Figure 14. Three-dimensional steady viscous solution with inviscid LDS model
does a good job of reproducing the time-averaged relative total temperature
distribution on the blade.
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Figure 15. The relative total temperature contours on the rotor surface indicate
that the inviscid LDS model predicts the time-averaged accumulation of the hot

streak on the pressure side, but under-predicts the spreading of the hot streak.

NASA/CR-- 1998-208666 21



1.125

BLADE-TO-BLADE CONTOURS OF RELATIVE
TOTAL TEMPERATURE RATIO AT BLADE LEADING EDGE

0.8125

0.500

SS

Steady Steady Viscous with Time-Averaged
Viscous Inviscid LDS Model Viscous

ps

Figure 16. The inviscid LDS model reproduces the time-averaged viscous
relative total temperature segregation at the leading edge that is not produced by

the steady viscous solution.
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Figure 17. The LDS model reproduces the time-averaged viscous relative total
temperature segregation, but the core of the hot streak predicted with the LDS

model is less concentrated than that of the time-averaged hot streak core.
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Figure 18. The inviscid LDS model indicates that that the hot streak completely

segregates by the time it reaches the trailing edge, while the time-averaged

viscous flow shows some hot flow in the core region.
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Figure 19. The inviscid LDS model shows the same relative total temperature

levels and location of increased heating on the outer air seal as the time-

averaged viscous relative total temperature distribution, while the steady viscous

solution under-predicts the temperature at all axial locations and delays the heat

buildup until almost mid-chord.
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